当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Ina Siller, Dr. Janina Bahnemann
The development of microfluidics and “lab-on-a-chip” (LOC) systems offer a tremendous potential for a wide range of applications in biotechnology and bioprocess engineering. There is a constant interest in the use of microfluidic devices for biotechnological applications due to their capability to enable precise and rapid manipulation of cells and other biological samples. The advantages of miniaturized systems include small sample volumes, low reagent consumption, the possibility of systems parallelization and automation as well as a strictly controlled and reproducible environment. Three-dimensional (3D) printing technologies represent an attractive alternative to conventional micro fabrication techniques due to their great potential for the production of complex structures in high resolution and in a short period of time. Therefore, 3D printing is particularly advancing the development of LOC prototypes. In addition, biocompatible 3D printing materials are emerging that can be used for biological applications (e.g. cell cultivation). Here we present some examples of 3D-printed microfluidic systems that can be directly integrated into bioprocesses. 3D-printed micromixers allow a fast and homogeneous mixing of cells, particles and detergents. Through the integration of 3D-printed spiral separators, a continuous separation of CHO cells is achieved at the end of cultivation. In addition, 3D-printed biosensor systems have been developed for the online detection and monitoring of analytes in cell culture processes. 3D printing and the availability of biocompatible printing materials is facilitating the development of individual LOC prototypes and microbioreactors, which can also further bioprocess development.