ISSN: 2155-952X

バイオテクノロジーとバイオマテリアル

オープンアクセス

当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

インデックス付き
  • 索引コペルニクス
  • Google スカラー
  • シェルパ・ロミオ
  • Jゲートを開く
  • Genamics JournalSeek
  • アカデミックキー
  • 研究聖書
  • 中国国家知識基盤 (CNKI)
  • Global Online Research in Agriculture (AGORA) へのアクセス
  • 電子ジャーナルライブラリ
  • レフシーク
  • ハムダード大学
  • エブスコ アリゾナ州
  • OCLC-WorldCat
  • SWBオンラインカタログ
  • 仮想生物学図書館 (vifabio)
  • パブロン
  • ジュネーブ医学教育研究財団
  • ユーロパブ
  • ICMJE
このページをシェアする

抽象的な

A nanofluidic paradigm and approach to brain water metabolism

Ernst Titovets

The brain interstitial fluid, presenting an external medium for the neural cells, is involved in the nutrient and gas transport, non-synaptic intercellular communication (volume transmission), signal transduction, transport and targeted delivery of drugs and metabolites, ionic homeostasis, removal of pathogenic metabolites, the migration of cells (malignant cells, stem cells), transfer of heat generated by neuractivity
The nanodimentionality of the brain interstitial space has born a dominating opinion within the medico-biological community of a diffusion barrier to water movement and mass transfer events there. On the other hand, the very nanodimentionality of the brain interstitial space dictates the
use of the slip-flow principles of nanofluidics to describe water movement there. The fluid flow in the nanodimentional spaces is usually many orders of magnitude higher than predicted from the conventional no-slip approach. The nanofluidic paradigm to the water movement in the
brain interstitial space has been used by us to describe a nanofluidic mechanism of brain water metabolism. There has been carried out computer simulations, based on the new principle, of the mass transfer of glucose, oxygen and carbon dioxide within the neurovascular unite. We simulated the effects on the brain water metabolism of AQP4 polarization in the astrocyte endfeet membrane enveloping capillaries. Possible clinical implications of the simulation results are discussed. In particular, the nanofluidic mechanism might be used to develop the AQP4-targeted drug therapy of brain edema, drug delivery to brain tumors, removal of pathogenic metabolites and other.