当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Chang Kuang
The threats to biodiversity in the world today are numerous and expanding quickly. Approaches that combine bioinformatics, extensive phylogeny reconstruction, utilization of digital specimen data, and complex post-tree analysis (such as niche modelling, niche diversification, and other ecological analyses) are necessary to address these biodiversity concerns. Incomparable opportunities for mobilizing and integrating vast amounts of biological data are now available thanks to recent advancements in phylogenetics, emerging cyber infrastructure, and new data sources. This has led to the identification of complex patterns and the development of novel research hypotheses. These findings are significant because the global biodiversity data that are now being gathered and examined are intrinsically complicated. We refer to the systematics, ecology, and evolution-related research that is being made possible by the ongoing integration and development of the biodiversity tools outlined here as “biodiversity science.” To speed up research in these fields, new training that combines data science expertise with domain knowledge in biodiversity is also required. The future of global biodiversity depends on integrative biodiversity science. We cannot simply respond to the ongoing threats to biodiversity; instead, we must anticipate them. Using an integrative, multifaceted, big data approach, researchers can now project biodiversity and provide vital information for the general public, land managers, policy makers, urban planners, and agriculture, as well as for scientists.