ISSN: 2332-0702

口腔衛生と健康のジャーナル

オープンアクセス

当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

インデックス付き
  • 索引コペルニクス
  • Google スカラー
  • Jゲートを開く
  • ジャーナル目次
  • レフシーク
  • ハムダード大学
  • エブスコ アリゾナ州
  • OCLC-WorldCat
  • パブロン
  • ジュネーブ医学教育研究財団
  • ユーロパブ
  • ICMJE
このページをシェアする

抽象的な

A Novel Advance for Orthodontic Landmarks Recognition Using an Artificial Neural Network

Ali Mohammad Saghiri

Background: Cephalometric analysis is the clinical application of dental cephalometry. It is investigation of the dental and skeletal connections of a human skull. Cephalometric analysis is one of most difficult part for orthodontic and orthogenetic surgical treatments. Most of time landmark identifications is time consuming and has high dependency to operator. the aim of current investigation is to find a new approach for orthodontic landmarks identification using an artificial neural network to enhance identification of cephalometric landmarks.

Materials and Methods: 110 lateral cephalograms were randomly selected from orthodontic private office and spited in two parts, First for training artificial neural network (ANN) and the remain cephalograms used for the evaluation of the software. In blind manner we asked three orthodontists to locate 5 landmarks on software and used these information for training. After that, our algorithm identified 5 landmarks on rest of cephalograms automatically. Eventually the result of both Algorithm evaluation and orthodontists landmarks for second part were compared with each other by "paired T test".

Results: Current Investigation showed, in four points out of five, the mean average distance between the point determined by ANN and the orthodontist’s points, was less than 1mm accuracy for all four landmarks.

Conclusion: With the limitation of this study, the results confirmed that that the landmark locating errors by ANN algorithms has near enough accuracy to realization, therefore it could be a proper substitute for manual method.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません。