当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Lennart Gustafsson
This paper analyzes the behavior of Alzheimer’s disease simulations in an artificial neural network and based on the results proposes alternative possible diagnoses for Alzheimer’s disease. This is one of the most common fatal diseases, increasing in severity over time. Despite its high prevalence and thousands of yearly publications in this area, no cure has been found to date but in anticipation of a cure early detection is important towards fighting the disease.
The simulation of Alzheimer’s disease employs Hopfield memories. It is observed that the number of iterations needed to recognize distorted symbols is influenced by a small loss of connections while the recognition success rate stays surprisingly high for larger losses of elements. This is because the distortion enforces a search iterative process which is superfluous if the symbol tested is identical with the learned symbol. Hence, it is possible to suggest an early diagnostic approach which is based on recognizing e.g. characters of an alphabet with distorted or fragmented cues and measuring the time needed to perform the task, instead of merely measuring the subject’s success rate in the recognition process.