当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Topudyati Mondal
Antibodies, or immunoglobulins, are well-known for their role in recognizing and binding to foreign substances in the body. These catalytic antibodies, known as abzymes, exhibit enzymatic activity through the formation of a covalent linkage between PLP and a specific lysine residue within the antibody's antigen-binding site. This connection allows abzymes to perform diverse chemical transformations, previously considered exclusive to enzymes. The discovery of PLP-dependent abzymes opens up new opportunities for the development of novel therapeutic strategies, enzymatic biosensors, and biocatalysts for industrial applications. However, challenges in understanding the factors influencing catalytic activity and optimizing abzyme design and production remain. Further research is necessary to uncover the structural basis of abzyme catalysis and expand the range of PLP-dependent reactions that can be catalyzed by antibodies. However, recent studies have revealed a new dimension of antibody functionality—catalysis. Specifically, antibodies that are catalytically reliant on pyridoxal-3′-phosphate (PLP), an active form of vitamin B6, have emerged as a fascinating area of research. PLP serves as a cofactor in various enzymatic reactions, and its utilization by antibodies expands the functional repertoire of immunoglobulins. Overall, the catalytic antibodies reliant on pyridoxal-3′-phosphate represent a significant advancement in antibody functionality, with the potential to revolutionize enzyme-based technologies and contribute to medical and biotechnological advancements.