ISSN: 2155-952X

バイオテクノロジーとバイオマテリアル

オープンアクセス

当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

インデックス付き
  • 索引コペルニクス
  • Google スカラー
  • シェルパ・ロミオ
  • Jゲートを開く
  • Genamics JournalSeek
  • アカデミックキー
  • 研究聖書
  • 中国国家知識基盤 (CNKI)
  • Global Online Research in Agriculture (AGORA) へのアクセス
  • 電子ジャーナルライブラリ
  • レフシーク
  • ハムダード大学
  • エブスコ アリゾナ州
  • OCLC-WorldCat
  • SWBオンラインカタログ
  • 仮想生物学図書館 (vifabio)
  • パブロン
  • ジュネーブ医学教育研究財団
  • ユーロパブ
  • ICMJE
このページをシェアする

抽象的な

Advanced machine learning in bioprocess development

Maximilian Krippl

With an increasing demand for biopharmaceuticals in general and more and more players entering the biosimilar market, there is an increased focus on process development and control to stay ahead of the competition. However, true process understanding is often limited due to the high complexity of the system hindering the usage of simple mechanistic equations for process description. Further, long process times and large amounts of critical process parameters (CPPs) limit the number of optimization experiments for a full design space description.

Advanced machine learning methods, such as hybrid models, help to get more information from fewer experiments by bridging the gap between mechanistic understanding and underlying unknown mechanism hidden in the data. Hence, the combination of well-understood, mechanistic equations and data-driven algorithms increases the predictive capability while simultaneously reducing the number of experiments required to understand, model, and predict bioprocesses.

Within his presentation, both and upstream and downstream hybrid modeling approach will be covered to demonstrate both the potential and superior extrapolation capability of such models. In an E. coli upstream fed-batch process a hybrid model was applied to better describe and understand the impact of the critical process parameters on the critical quality attributes in a time-resolved manner. This approach enabled intra-process changes allowing us to screen a specific design space in 50% of the time. In the downstream tangential flow filtration showcase, the superior performance of a hybrid model approach will be demonstrated. Here a full process model could be generated within a single working day, enabling accurate flux predictions over the full process length. Further, the superior behavior of the hybrid model compared to the film theory will also be demonstrated.