当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Mavins T
Advances in biopolymer-based 3D printing have revolutionized the landscape of sustainable manufacturing, offering a greener and more environmentally friendly approach to production. This abstract highlights the recent advancements in biopolymer-based 3D printing technologies and their potential to drive sustainable manufacturing practices for a greener future. The abstract begins by discussing the use of biopolymers, which are derived from renewable sources such as plant starches, cellulose, and proteins, as the primary materials for 3D printing. These biodegradable and eco-friendly materials offer numerous advantages, including reduced carbon footprint, biocompatibility, and resource renewability. The abstract explores the wide range of biopolymers available for 3D printing and their unique properties that make them suitable for various applications. Next, the abstract delves into the advancements in 3D printing processes tailored for biopolymers. It discusses the development of printing techniques such as fused deposition modeling (FDM), stereolithography (SLA), and selective laser sintering (SLS) specifically optimized for biopolymer-based materials. The abstract highlights the improvements in printability, resolution, and mechanical properties achieved through process optimization, material formulation, and post-processing techniques. Furthermore, the abstract explores the sustainability aspect of biopolymer-based 3D printing. It discusses the reduction in waste generation, energy consumption, and carbon emissions associated with this manufacturing approach compared to traditional methods. The abstract also emphasizes the potential for closed-loop recycling and circular economy concepts in biopolymer-based 3D printing, contributing to a more sustainable and resourceefficient manufacturing cycle. The abstract concludes by highlighting the diverse applications of biopolymer-based 3D printing across industries such as healthcare, packaging, consumer goods, and automotive. It discusses the production of personalized medical implants, biodegradable packaging materials, and eco-friendly consumer products as examples of how biopolymer-based 3D printing enables sustainable and customized manufacturing solutions. In summary, the abstract showcases the advances in biopolymer-based 3D printing and its potential to revolutionize sustainable manufacturing. By utilizing renewable and biodegradable materials, optimizing printing processes, and embracing circular economy principles, biopolymer-based 3D printing offers a pathway towards a greener future, where environmentally friendly manufacturing practices can thrive.