当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Nikolaos Sfakianakis
For the administration of adaptive mesh refinement on (hyper-)rectangular meshes, we provide a method. Our method is an efficient, easy-to-use method for h-refinement on 1-, 2-, and 3-D domains that does not need navigating the connectivity graph of the ancestry of mesh cells. The use of a rectangular mesh structure substantially facilitates the detection of siblings and nearby cells [1-15]. The administration method is especially made for meshes that are smooth since matrix operations use smoothness on an as-needed basis. It is inexpensive for a variety of mesh resolutions over a broad class of issues thanks to its modest memory footprint. We provide three uses for this method, one of which discusses the advantages of h-refinement in a 2D setting.
Adaptive mesh refinement (AMR) has frequently been used to increase the precision of numerical techniques and lessen their computing weight. AMR is frequently used in the domains of engineering, astronomy, and fluid dynamics, where the related techniques have become an essential part of the total numerical inquiry. Mathematical biology, on the other hand, has not yet seen much of their use. Examples are available.