ISSN: 2277-1891

先進的なイノベーション、思想、アイデアの国際ジャーナル

オープンアクセス

当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

インデックス付き
  • 索引コペルニクス
  • Google スカラー
  • Jゲートを開く
  • Genamics JournalSeek
  • ウルリッヒの定期刊行物ディレクトリ
  • レフシーク
  • ハムダード大学
  • エブスコ アリゾナ州
  • パブロン
このページをシェアする

抽象的な

Analysis of Different Performance Parameters of Equilateral Triangular Microstrip Patch Antenna using Artificial Neural Network

Abhishek Tripathi, Vandana Vikas Thakare and P. K. Singhal

This paper presents the use of artificial neural network for the estimation of different performance parameters (i.e. Directivity, Radiation Efficiency, Gain and Bandwidth) of a coaxial feed equilateral triangular microstrip patch antenna. Levenberg-Marquardt training algorithms of MLPFFBP-ANN (Multilayer Perceptron feed forward back propagation Artificial Neural Network) has been used to implement the neural network models. The simulated values for training and testing the neural networks are obtained by analysing the equilateral triangular microstrip patch antenna using CST Microwave Studio Software. The results obtained using ANNs are compared with the simulation findings and found quite satisfactory and also it is found that neuro models are not converges using one hidden layer for the calculated training data so more than one one hidden layers are used for training the neural network models. 

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません。