ISSN: 2332-0877

感染症と治療ジャーナル

オープンアクセス

当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

抽象的な

Application of a Protease Inhibitor for the Treatment of Viral Respiratory Infections: Acceptable Concentrations of the Protease Inhibitor Nafamostat and Ammonium Chloride for Direct Administration to the Respiratory Epithelium of Mice

Satoko Nakagomi

Back ground: Enveloped viruses invade cells by fusing the viral envelope with the cell membrane. Most viral fusion proteins require specific host protease(s) to activate their fusion activity. Many influenza viruses and severe acute respiratory syndrome associated coronaviruses use transmembrane serine protease TMPRSS2 for activation. Protease inhibitor nafamostat suppresses TMPRSS2, thereby interfering with the viral infection in-vitro. However, no successful application of nafamostat for the treatment of respiratory viral infection has been reported. This is because no method has been established to deliver nafamostat to the respiratory epithelium. Additionally, many coronaviruses have another infectious pathway, in which the virus is engulfed in endosome and activated by endosomal protease(s) and acidification. Ammonium chloride is known to block this pathway in-vitro , by interfering with the endosomal acidification. The present study has done to explore the method to safely deliver these reagents by assessing whether adverse effects occur when the reagents are administered to the respiratory epithelium in mice.

Methods: To ass ess adverse effects, inbred mice were intranasally administered the reagents 2~20 μL/day for a week under anesthesia. Mice were daily observed and change in the body weight was used as a health status barometer. At the end of experiment, the serum biochemical examination was done.

Results: The solution of 200 μM nafamostat and 74 mM ammonium chloride could be intranasally administered 20 μL/day for 1 week to adult C57BL/6 mice without any visible adverse effects. Biochemical data on these mice were within the normal range.

Conclusion: Since 1 μM nafamostat and 50 mM ammonium chloride are known to efficiently suppress the viral invasion to cell in-vitro, nafamostat is highly expected to show inhibitory effect in the virus-infected mice, and ammonium chloride may be also available to treat the virus-infected mice. The present study encourages future researches in infected mice and to apply these reagents for the clinical treatment.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません。