ISSN: 2155-6199

バイオレメディエーションと生分解のジャーナル

オープンアクセス

当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

インデックス付き
  • CAS ソース インデックス (CASSI)
  • 索引コペルニクス
  • Google スカラー
  • シェルパ・ロミオ
  • Jゲートを開く
  • Genamics JournalSeek
  • アカデミックキー
  • ジャーナル目次
  • 研究聖書
  • 中国国家知識基盤 (CNKI)
  • ウルリッヒの定期刊行物ディレクトリ
  • Global Online Research in Agriculture (AGORA) へのアクセス
  • レフシーク
  • ハムダード大学
  • エブスコ アリゾナ州
  • OCLC-WorldCat
  • SWBオンラインカタログ
  • パブロン
  • ジュネーブ医学教育研究財団
  • ミアル
  • ICMJE
このページをシェアする

抽象的な

Artificial Intelligence for Electrocoagulation Treatment of Olive Mill Wastewater

Mahmoud Nasr and Abeer EL Shahawy

An electrocoagulation system using bipolar aluminium electrodes was studied for the treatment of olive mill wastewater (OMW). Response surface methodology and adaptive neuro-fuzzy inference system (ANFIS) were employed to study the effects of operating parameters on the removal of chemical oxygen demand (COD). At the optimum condition of initial pH 4, current density 83 mA cm-2 and 20 min-electrolysis time, the estimated COD removal efficiency of 40.4% was close to the experimental result (42.7%) with a coefficient of determination r2=0.92. Results from ANFIS indicated that the order of operating parameters affecting the COD removal efficiency was pH>current density>electrolysis time. Additionally, the optimal combination of two inputs influencing the COD removal efficiency was current density × pH, since it recorded the least training root mean square error of 5.04. This study demonstrated that ANFIS could be used as a tool to describe the factors influencing electrocoagulation process.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません。