ISSN:

生態学および毒性学ジャーナル

オープンアクセス

当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

抽象的な

As-tolerant P-A strain of Pantoea ananatis: a potential PGPR, isolated from the Hezhou mining area in China

Fiza Liaquat

Microbial and plant assisted bioremediation is an emerging way for the remediation of soils polluted with heavy metals. To screen the arsenic tolerant bacteria, soil samples were collected from Nanjing mining area, China. The average cadmium content of the mine soil reached 45.71 mg/kg, which was indicating serious pollution and potential ecological risk. From the mine soil, six arsenic tolerant plant growth promoting rhizobacteria (PGPR) were isolated. The isolated bacterial strain “P-A” showed maximum arsenic tolerance and it was selected for further experimentation. This strain was identified as Pantoea ananatis by 16S rRNA gene sequencing. P-A was found to tolerate maximum arsenic at 2.0 mM concentration. This strain also exhibited good adsorption capacity (up to 45.7%) of heavy metal at 1 mM concentration. Results of this study exhibited organic phosphorus solubilization (37.08 mg/L) and IAA biosynthesis (18.11 mg/L) ability of isolated P. ananatis. Scanning electron microscopy (SEM) revealed cell shrinkage and the cell wall of P. ananatis became rough at 1 mM arsenic stress. FT-IR study described the differences between functional groups and nature of chemical bonds between and after the absorption of arsenic by P. ananatis. At 0.25 mM arsenic concentration, P. ananatis treated seeds of Capsicum annuum L. developed 2.46 times longer roots than untreated seeds. Results of this study helped us to conclude that P-A strain of P. ananatis possesses significant metal tolerance and bioremediation potential against arsenic. In future, this strain can be used as a microbial remediation agent to detoxify heavy metals in contaminated soils.