当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Suparna Roy and Anantharaman P
Some seaweed has been used as an important source of commercial application of phycocolloids, agar, and alginate consequently some seaweeds have also been utilized as food and food ingredients due to their high nutritive compositions such as carbohydrates, protein, lipid, amino acids, fatty acids, fibre and minerals. In different countries, including India, seaweeds are gradually taking place as food items in the market, so their biochemical components analysis will decipher their nutritional implications. In this investigation, total 33 species of seaweeds were collected from the southeast coast of India and analyzed for their biochemical composition such as carbohydrate including glucose and starch, protein and lipid. The carbohydrate content varied from 15.20 ± 0.69 mg/gm dry weight (Padina boergesenii) to 97.69 ± 2.3 mg/gm dry wt (Gracilaria edulis). The carbohydrate content of red seaweeds was comparably higher than green and brown seaweeds. The protein content was minimum in Cystoseira indica (76.23 ± 0.21 mg/gm dry wt) and maximum in Amphiroa anceps (96.06 ± 0.95 mg/gm dry wt) and lipid content was comparatively high in Valoniopsis pachynema (82.33 ± 2.51 mg/gm dry wt) and Caulerpa racemosa (81.06 ± 0.37 mg/gm dry wt). The glucose content was high in Digenea simplex (0.78 ± 0.004 mg/gm dry wt) followed by Laurencia papillosa (0.61 ± 0.08 mg/gm dry wt) likewise starch content was also high in Digenea simplex (0.72 ± 0.01 mg/gm dry wt) and Laurencia papillosa (0.54 ± 0.00 mg/gm dry wt). From this study, it was concluded that the above mentioned seaweeds will be used as food after further more detailed analysis of the other biochemical components.