当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Malini Bhattacharyya, SK singh and Babita Patni
Soil salinity is a major problem of this century. It effects crop productivity as well as plant growth and development. Salt ions are responsible for several types of plant organelle damage. Salinity stress is the most dangerous stress among all abiotic stresses in the environment. During salinity stress various cellular and biochemical mechanisms get up regulated to protect the plant. Cabbage family has a large number of plant species with significant variation of chromosome number as well as significant variation in salinity stress responses. This family has the model plant named Arabidopsis thaliana which is a salt susceptible plant where the lungiella halophila shows salt resistant. Members of the Brassica ceae family show a wide range of reaction to salt stress to survive. High salinity stress causes membrane rupture, electrolyte leakage, ionic and osmotic equilibrium disruption even the death of plants. Pathway like SOS (Salt Overly Sensitive) helps Cabbage plants to survive in this kind of conditions. Along with biochemical pathways, Cabbage (Brassica ceae) family plants always up regulate salt stress removing compounds like several carbohydrates, proteins, amino acids and queternary ammonium compounds which act as osmoprotectants. This chapter describes the cellular as well as biochemical responses of Brassica ceae family member plants to fight against salinity stress.