ISSN: ISSN 2472-0518

石油とガスの研究

オープンアクセス

当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

抽象的な

Biodiesel: Latest Perspective on Production Technology and Prospects

Yunjan Yang

Since the previous two decades, biodiesel has gained popularity as a possible alternative to fossil diesel. However, one of the primary issues with the industry’s method of producing biodiesel is the inability of homogenous alkali catalysts to be recycled and the waste that is produced as a result of the water washing that follows. Due to their distinctive qualities, including non-volatility, great solubility for a wide range of organic and inorganic compounds, structural tenability, environmental friendliness, and wide liquid temperature range, ionic liquids are one of the finest alternatives to alkali catalysts. However, their use has been constrained by their high viscosity and challenging recovery. To get around these problems, heterogenization of ionic liquids on solid supports has recently been proposed. When it comes to creating sturdy supports with high porosity and specific surface area, nanoporous materials have excelled. The design of ionic liquids deposited on nanoporous materials as catalysts for the manufacture of biodiesel is reviewed in this research. The application of this kind of catalysts for improving reaction conditions was the main focus. Also covered were difficulties and chances for enhancing the entire production process while these catalysts are present. Despite the fact that numerous ionic liquids supported by nanoporous materials produced substantial biodiesel yields, their significantly greater cost in comparison to traditional catalysts remained a considerable obstacle.