ISSN: 2168-9806

粉末冶金と鉱業のジャーナル

オープンアクセス

当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

インデックス付き
  • CAS ソース インデックス (CASSI)
  • 索引コペルニクス
  • Google スカラー
  • Jゲートを開く
  • Genamics JournalSeek
  • レフシーク
  • ハムダード大学
  • エブスコ アリゾナ州
  • OCLC-WorldCat
  • パブロン
  • ユーロパブ
このページをシェアする

抽象的な

Building Materials Corrosion Control by Fiber Reinforced Polymers

Singh RK

This paper highlights the beauty of fiber reinforced polymers (FRP) in the field of corrosion protection reinforced concrete structures (RCS). The fiber reinforced polymers develop anticorrosive barrier on the surface reinforced concrete and minimize the attack of corrosive pollutants. Corrosion is major problems with reinforced concrete. It occurs due to interaction of acids, alkalis, salts, pollutants, particulates, heat, light microorganisms and macro organisms and its own morphology. These substances create hostile environment for building materials of concrete and they produce chemical and corrosion reactions. The other factors also influence the corrosion of materials like acid rain, wind and weathering effects. The industrial effluents, flues gases and wastes provide major role in the field of concrete corrosion. These reactions change their mechanical, physical and chemical properties and tarnish their facial appearance. When building materials of concrete come in contact of corrosive environment, they can develop corrosion cell in presence of electrolyte. The corrosion reactions aggravate with rebar steel of concrete and their deterioration starts. There are several forms of corrosion occurs with iron bar of concrete such as galvanic, pitting, crevice, stress, intergranular, blistering, embrittlement, erosion, cavitations, observes inside and outside of materials. Building materials of concrete also show chemical reaction with corrosive substances and produce dissolving and swelling. Developed Nations expense 4% of their GNP for corrosion protection, parts replacement and repairing and maintenance work. The major sources of corrosive substances are various types of industries, mining, thermal power plants, petroleum refinery, burning of fossil fuel, chemical wastes, biological wastes, human wastes, household wastes, agricultural wastes, animal wastes, food grain wastes, hospital wastes, chimneys flues gases, industrial effluents. These sources release acids, alkalis, salts, organic compounds and metals as a form of effluents, oxides of carbon, oxides of nitrogen, oxides of sulphur, oxides of halogen, hydride of sulphur, hydride of nitrogen, volatile organic compounds as flues gases and different types of wastes. These pollutants substances contaminate water, air and soil. The essential components of RC Structures are sand, stones, cements, iron bars, bricks and water. The above mentioned corrosive substances generate hostile atmosphere for building materials. Due to this corrosive effect life of RC Structures are reduced and disintegration occurs inside and outside of them so their stability, durability and longevity become questionable. There are various techniques for corrosion protection of RC Structures. But these techniques did not give good result for their protection. Hence for this work Fiber Reinforced Polymers will be used to control corrosion of RC Structures.