植物遺伝学および育種ジャーナル

オープンアクセス

当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

抽象的な

Can Plants Genomes be Edited Using the Current gRNA Ranking Prediction Algorithms?

Fatima Sheikh

Conventional breeding often requires decades to introduce a new feature into a crop, but recently developed genome sequence modification technology offers the potential to shorten this time. One of these cutting-edge breeding techniques uses CRISPR/Cas9, an RNA-directed DNA nuclease, to cut the genomic DNA in living organisms, making it easier to delete or insert sequences. Guide RNAs control this targeting based on certain sequences (gRNAs) [1]. But selecting the best gRNA sequence is not without its difficulties. Although many of them allow the use of plant genomes to identify potential off-target regions, almost all of the current gRNA design tools for usage in plants are based on data from animal experimentation. Here, we analyse the performance and predicted consistency of eight various online gRNA-site tools. Unfortunately, neither a statistically meaningful association between rankings and in vivo effectiveness, nor any agreement between the rankings produced by the various
algorithms. This indicates that significant gRNA performance and/or target site accessibility aspects in plants have not yet been clarified and taken into account by gRNA-site prediction algorithms [2].

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません。