当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

抽象的な

Cervical Cancer Diagnosis Using Data Mining Algorithm

Johnson Gurneey

A class of data mining techniques can be used to accurately diagnose cervical cancer, which has significant practical implications. In particular, the beneficial information present in a sizable amount of medical data may not only subtly advance medical technology but also, in the future, aid in the detection of cervical cancer. In order to collect and analyse picture information, this study enhances the data mining algorithm and integrates image recognition and data mining technologies. Additionally, this study fully exploits the image data to segment the cervical cancer cell image, choose the feature vector in accordance with the features of the cervical cancer cell, and create the classifier using the statistical classification approach. The test results demonstrate that this system’s automatic recognition and supplementary diagnosis effects are both good. As a result, it can be confirmed in clinical settings throughout the follow-up.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません。