当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

インデックス付き
  • 索引コペルニクス
  • Google スカラー
  • シェルパ・ロミオ
  • Jゲートを開く
  • Genamics JournalSeek
  • アカデミックキー
  • 電子ジャーナルライブラリ
  • レフシーク
  • ハムダード大学
  • エブスコ アリゾナ州
  • OCLC-WorldCat
  • SWBオンラインカタログ
  • 仮想生物学図書館 (vifabio)
  • パブロン
  • ユーロパブ
このページをシェアする

抽象的な

Classification of Industrial Processes from Engineering Drawings Using Graph Neural Networks

Zivko Nikolov

While ample scanned engineering drawings area unit received each year, the net quotation corporations for custom mechanical components have knowledgeable about a billowing got to increase their process potency by substitution the presently manual examination method with associate degree automatic system. Previous work has used ancient, and data-driven computer-vision approaches to observe symbols and text info from the drawings.However, there lacks a unified framework to work out the associated producing processes as a crucial step for realizing associate degree automatic quoting system. During this paper, we tend to propose a process framework to mechanically verify the producing methodology acceptable to provide every queried engineering drawing, like lathing, flat solid bending, and edge. We tend to gift a data-driven framework that directly processes the formation pictures with a series of pre-processing steps and accurately determines the corresponding producing strategies for the queried spare a graph neural network. We tend to propose a completely unique line tracing algorithmic rule to rework advanced geometries in engineering drawings into vectorized line segments with bottom info loss.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません。