ISSN: ISSN 2472-0518

石油とガスの研究

オープンアクセス

当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

抽象的な

Creation of a Hybrid Biorefinery for the Manufacture of Jet Biofuel

Tareque Ansari

It has been determined that jet biofuel (JBF) is an essential solution for reducing the aviation industry’s carbon footprint. Since planes depend entirely on fluid powers, the improvement of pathways that creates JBF as a significant item has become pivotal. Over the past ten years, seven pathways for producing JBF have been developed and approved. Each of these pathways can handle a particular kind of biomass. However, there is still a problem with feedstocks’ availability, sustainability, and feasibility to meet the growing demand for jet fuel. As a result, this study offers a comprehensive strategy for developing a cutting-edge hybrid biorefinery that can process a variety of biomass feedstocks, including energy crops (such as Jatropha energy crop), dry biomass (such as municipal solid waste), and wet biomass (such as livestock manure). A Qatari industrial-scale biorefinery was modeled in Aspen Plus with a pre-defined biomass geospatial distribution and the country’s best biorefinery location in mind [1]. Hydroprocessing, Fischer-Tropsch, gasification, dry-reforming, and hydrothermal liquefaction were all incorporated into the hybrid system. While biomass ideal inclusion streams were assessed utilizing an expectation model. In addition, extensive integrations of materials, heat, water, and power were carried out in order to maximize JBF production, reduce its impact on the environment, and maintain cost control. 328, 94, and 44 million liters of JBF, gasoline, and diesel were produced by the system, respectively. Delivered JBF was described and found to agree with every single worldwide norm. Considering a maximum allowable jet biofuel blend of 50%, the generated JBF can power approximately one third of Qatar’s fleet and replace 15.3% of the country’s jet fuel requirements. In comparison to the current market price of conventional Jet-A fuel, the proposed model achieved a minimum selling price of JBF of 0.43 dollars per kilogram (2019). Additionally, the model’s environmental analysis revealed that JBF reduced greenhouse gas emissions by 41% over the course of its lifecycle in comparison to Jet-A fuel [2].