当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Ebtesam El Bestawy, Ahmed AL-Hejin, Ranya Amer and Rzaz Abdulrazaq Kashmeri
The study aimed to investigate the ability of indigenous and/or exogenous free living bacteria either individual or as mixed culture to decontaminate raw domestic wastewater. Seven indigenous and two exogenous bacteria were selected and identified using traditional as well as molecular characterization, then used in the batch remediation system for seven days. Results indicated that the raw wastewater was relatively of high strength according to the levels of all the tested parameters. Treatment efficiency was time and bacterial species dependent. In general, the mixture of the tested bacteria considered the most efficient for the removal of all the tested parameters. Pseudomonas stutzeri (PS) was perfect for removing organic matter (BOD and COD) while the mixed culture considered the most efficient for removing fecal coliform (≈100%) brought them to safe (60, 100 mg/l and ≈ 0.0 CFU/ml respectively) discharge limits (MPL) stated by the Egyptian and Saudi Environmental laws that regulate discharging of domestic and industrial wastewater into fresh and saline open water. In addition, high removal efficiencies of TSS, FOG and TC recording 39.1, 90.0 and 99.0% respectively were achieved by B. amyloliquefaciens (S1), E. coli (Rz6) and the mixed culture respectively. However, their residuals still higher (23.3, 20 and 200 fold respectively) than their MPLs for the safe discharge due to the short treatment course. Therefore, longer treatment time and/or using biofilm of the selected bacteria are highly recommended to bring the contaminated domestic effluent it to the safe limits for the environment. The present study confirmed the ability of the selected bacteria for the removal of the target contaminants especially pathogenic bacteria (coliform) and thus can be manipulated efficiently to decontaminate polluted systems providing the optimum degradation conditions.