ISSN: 2155-952X

バイオテクノロジーとバイオマテリアル

オープンアクセス

当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

インデックス付き
  • 索引コペルニクス
  • Google スカラー
  • シェルパ・ロミオ
  • Jゲートを開く
  • Genamics JournalSeek
  • アカデミックキー
  • 研究聖書
  • 中国国家知識基盤 (CNKI)
  • Global Online Research in Agriculture (AGORA) へのアクセス
  • 電子ジャーナルライブラリ
  • レフシーク
  • ハムダード大学
  • エブスコ アリゾナ州
  • OCLC-WorldCat
  • SWBオンラインカタログ
  • 仮想生物学図書館 (vifabio)
  • パブロン
  • ジュネーブ医学教育研究財団
  • ユーロパブ
  • ICMJE
このページをシェアする

抽象的な

Destructive electron extraction from bacterial membrane respiration chain for advanced infection

Jinhua Li

The rise of multidrug-resistant bacteria and the dearth of novel antibiotic development urgently need breakthrough strategies that go beyond classical antibiotic mechanism to fight this approaching human health cataclysm. There is an increasing demand for successful infection treatment through innovative therapy solutions. Inspired by the metabolism cascade of bacteria, a new antibacterial concept i.e. “bacteria starvation therapy” is developed to enable the drainage of extracellular electrons from the electron transfer chain in membrane respiration and thereby interrupt the energy metabolism. This thought has been realized by several elaborately designed material systems including: (i) graphene film on conductor Cu, semiconductor Ge and insulator SiO2 substrates, (ii) Ag, Au or Co doped TiO2 coatings, and (iii) W doped VO2 thin films. We first design system (i) and show that the antibacterial ability has a strong dependence on substrate electrical conductivity (band structure) in the order of Cu > Ge > SiO2. To testify our thought, we further use system (ii) to display that the antibacterial activity can be significantly enhanced along with narrowing TiO2 bandgap and tailoring energy band structure to make its conduction band bottom lower than the biological redox potentials (−4.12 ~ −4.84 eV) generated from the sequential redox couples in extracellular electron transfer chain of bacteria. To expand the universality of our hypothesis, we select system (iii) and reveal that W doping is able to tailor the semiconductor-tometal phase change of VO2 thin film, narrow its bandgap and increase electrical conductivity, thereby boosting the antibacterial property. In conclusion, band-structure-tunable semiconductor materials can serve as extracellular electron acceptors and interfere with electron transfer and energy metabolism to effectively inhibit bacteria growth (“bacteria starvation therapy”). Through the infection starvation therapy, the number of bacteria on biomaterial implants and infected tissues can be significantly decreased. This starvation therapy concept can also apply to cancer therapy because mitochondria are similar to bacteria on the basis of endosymbiotic theory. The “bacteria starvation therapy” provides new insights into the nano–bio interactions and paves the way for the design of novel antibacterial and anticancer nanomaterials.