アテローム性動脈硬化症: オープンアクセス

オープンアクセス

当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

抽象的な

Detailed Contribution Analysis of Metabolism Index Categories on Risk Probability Percentage of Having Cardiovascular Disease or Stroke Using GH-Method: Math-Physical Medicine (No. 316)

Gerald C Hsu

The author uses his developed GH-Method: math-physical medicine approach to investigate a more detailed contribution analysis of Metabolism Index (MI) on the subcategories for three medical conditions and three lifestyle details based on his risk probability percentages of having Cardiovascular Disease (CVD) or stroke for over a period of 10+ years.

Listed below is a table of his annualized risk probability percentage based on MI of having CVD or stroke:

Y2010: 100%

Y2011: 90%

Y2012: 83%

Y2013: 85%

Y2014: 72%

Y2015: 60%

Y2016: 55%

Y2017: 54%

Y2018: 54%

Y2019: 55%

Y2020: 51%.

This article describes the individual contributions from MI which includes three medical conditions sub-categories (glucose, BP, and lipids) and three lifestyle sub-categories (food, exercise, and others) of different modeling associated with artery blockage and artery rupture scenarios based on the risk probability percentage of having CVD or stroke. His research results from the past 10+ years have demonstrated the importance of maintaining an excellent healthy state for the entire body via a stringent lifestyle program in order to reduce the risk of having CVD or stroke.

Emphasis has been placed on the significance and contributions for a patient’s overall metabolism state. Therefore, three sub-categories of specific medical conditions (diabetes, hypertension, and hyperlipidemia) along with three sub-categories of lifestyle (food, exercise, and others) including weight and waistline are quantified. As a result, the findings corroborated with the advice from healthcare professionals to their patients.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません。