当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Adane Sirage Ali
Although Floating treatment wetlands (FTWs) provide immense advantages over other natural treatment facilities, there is no information about biofilm functioning and microbial-based processes in FTW. Therefore, this study was aimed to evaluate the magnitude of microbial-based processes in the root, bottom and water column zones of the FTW by employing of macrophytes. For this experiment, primary domestic wastewater effluent was used in two pairs of FTWs (I. psuedacorus and P. stratiotes) and a pair of control. Total microbial activity was estimated using FDA hydrolytic activity and specific microbial activities were examined as denitrification and nitrification activities, whilst viable microbial number and distribution in the FTW compartments were determined using ATP assay. The average nitrification rates in the FTWs were 0.55, 0.81 and 2.75 μg/ml of water, gravel and root surface per hour respectively; and denitrification rates were 0.022, 0.053 and 0.132 μg/ml of water, gravel and roots surface respectively. The mean fluorescein concentration for the FTWs were 9.2, 1.1 and 0.06 μg/ml of root, gravel and freewater respectively, indicating that the highest total microbial activity in the FTW occurs in the biofilm associated with the root system. Mean viable microbial community 3.85 × 108, 3.7 × 107 and 1.3 × 107 cells/ml of root surface, water and gravel surface. Therefore, all the result suggested that active pollutant removal in all FTW stakes place in the root zone.