当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Emmanuel Lyimo, Marie Schaedel, Molly Berntsen and Alex Kisingo
Coffee accounts for over 20% of Tanzania’s income from foreign exchange and has been identified as an essential crop for the future of food security in Africa. Coffee production in the Kilimanjaro region, one of Tanzania’s most important coffee-producing areas, is facing threats due to declining coffee prices, climate change, and outbreaks of fungal disease. Fungal-resistant hybrid coffee varieties have the potential to increase productivity and yields, although the ecological impact of their widespread introduction has not yet been determined. This study estimates the differences in aphid abundance and probability of aphid presence on hybrid and non-hybrid coffee plants in the Chagga homegardens. For this study, 1,119 coffee plants were sampled in 45 farms across 3 villages in the Kilimanjaro region. Hybrid coffee plants were 74.7% less likely to have the fungal disease coffee leaf rust (CLR) than non-hybrid plants (p<0.001). However, hybrid status was not found to be a significant factor in predicting aphid presence (p=0.88) or abundance (p=0.71). Factors that were significant in predicting aphid abundance included farm size (p<0.001), insecticide use (p<0.001), village (p=0.001), and ant count (p<0.001). The results of this study suggest that hybrid coffee has no significant bottom-up effect on the dynamics of the Chagga homegarden ecosystem.