当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Ja-Rang Lee, Yi-Deun Jung, Young-Hyun Kim, Sang-Je Park, Jae-Won Huh and Heui-Soo Kim
Radiotherapy has played a key role in the management of non–small-cell lung cancer (NSCLC). However, the use of radiotherapy in treating NSCLC is limited because of the intrinsic radiation resistance of tumor cells and injury to adjacent normal tissues. Many oncogenes are reported to be involved in radioresistance. Thus, novel moleculartargeting approaches to enhance the radiosensitivity of NSCLC cells are required to improve the therapeutic efficiency of radiotherapy. In this study, we report that expression of the human endogenous retrovirus-R (HERV-R) env gene is greatly elevated in γ-irradiation resistant A549 cells compared with radiation sensitive H460 cells. In addition, the HERV-R env gene was significantly increased in A549 cells after treatment with γ-irradiation. HERV-R env knockdown by siRNA in irradiated A549 cells led to overexpression of TP53 mRNA, followed by significant elevation in the levels of CDKN1A mRNA. Moreover, the expression of the apoptosis-related FAS-1 gene was increased, whereas the expression levels of the anti-apoptotic gene BCL2 were significantly decreased in the A549 cells in which the HERV-R env was suppressed by γ-irradiation. These results suggest that knockdown of HERV-R env with γ-irradiation causes cell cycle disturbances, which in turn induces apoptosis. In conclusion, the combination of HERV-R env knockdown and γ-irradiation has the potential to improve the therapeutic efficiency of radiotherapy for NSCLC.