当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Naoki Kado, Masanori Ito, Satoshi Fujiwara, Yuki Takahashi, Makoto Nomura and Toshiaki Suzuki
Background: The excitability of the spinal motor neurons of the contralateral upper limb increases during voluntary movement of the upper limbs. However, reports on the changes in the facilitation effects of the movements of the unilateral upper limb on the spinal motor neurons in the contralateral upper limb that are associated with motor learning are few. Methods: Sixteen right-handed healthy adults were randomly assigned to either the control group or the practice group. The F-waves were derived from the right abductor pollicis brevis muscle during the tasks before and after practice. The tasks included repetitive movements of the left upper limb between two small targets placed 20 cm apart on a desk. The subjects were instructed to accurately touch the targets with the tip of a pen. The practice of the practice group included repetitive movements using the same targets. The practice of the control group included repetitive movements without targets. The practice was performed for five sessions with each session consisting of 30 movements. The F-waves were analyzed for the amplitude ratio of F/M and latency. In addition, the number of times the tip of the pen touched the outside of the target was counted. Results: The amplitude ratio of F/M during post-practice significantly decreased compared with that during prepractice in the practice group. Latency showed no significant differences. The number of failures during post-practice decreased significantly compared with that during pre-practice in the practice group. Conclusion: This study suggests that the facilitation effects of the voluntary movements of the unilateral upper limb that were performed at a high difficulty level on the spinal motor neurons in the contralateral upper limb decreased with motor learning.