当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Nirmalya Ghosh and Malay Kumar Adak
A study was conducted for elucidation of expression of isozymic profiles with respect to salinity along with putrescine application in two rice varieties cv. Nonabokra and cv. Swarna at 200mM NaCl alone and with 2mM putrescine. Preliminarily these two varieties displays differential pattern of accumulation of Na+ as revealed from SEM micrograph studies. There recorded significant variation in activities in-vitro as well as by in-gel studies of Guaiacol Peroxidase (GPX), Ascorbate Peroxidase (APX), Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione Reductase (GR) enzymes. Activities for GPX, APX and SOD followed significant up regulation under salinity. In contrary CAT and GR enzymes were subdued in both varieties. Putrescine improved the activity for SOD, GPX and APX. CAT and GR maintained stable activity with putrescine. A number of isozymic bands were found with the induction of salinity and putrescine treatment. For SOD three distinct bands were recorded as Cu/Zn/Mn-Fe SOD. For GPX and APX multiple bands were revealed in activity gel. On the contrary CAT was insensitive with the putrescine induction and hardly there recorded any variation. GR isozyme was more prominent in band intensities both in salinity and putrescine. Conclusively different isozymic profiles have contributed to resist salinity along with putrescine.