ISSN: ISSN 2472-0518

石油とガスの研究

オープンアクセス

当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

抽象的な

Endocrine Disruption: confronting the most important sustainability challenge to ever engulf chemistry

Terrence J. Collins

Until recent times, chemical processes and products were commercialized solely on the strength of high technical and cost performances. Today we recognize the sustainability requires that health, environment and fairness performances also be integrated into the value proposition of chemical products and processes. The foundational purpose of any field of chemistry that proposes to make the chemical enterprise sustainable must surely be, first and foremost. to protect the plenitude of life from the downsides of commercial chemicals. Such a purpose is more important in its field distinguishing qualities than advancing society by adding to the upsides of chemical commerce through the invention of less hazardous products and processes. Today, the collective chemical enterprise represents an existential threat to the sustainability of our civilization that chemists little understand. This threat is arguably even faster acting than climate change and originates primarily (to the best of our understanding) in the endocrine disrupting properties of many chemicals, including some everydayeverywhere chemicals. In this presentation, I will (i) cover facts that identify endocrine disruption as an existential threat to life on earth (ii) show how endocrine disruptors can be identified experimentally, and (iii) touch on the iterative design process that we have used in the Institute for Green Science that I direct to develop TAML and NewTAML catalysts to destroy endocrine disruptors in water. The technical performance of NewTAMLs is unprecedented across both chemistry and biology and has given birth to the new field of Sustainable Ultradilute Oxidation Catalysis (SUDOC).