ISSN: 2476-2075

検眼: オープンアクセス

オープンアクセス

当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

抽象的な

Enhancing Quality Control: A Comprehensive Review of Computer Vision-Based Fabric Defect Detection Methods

Joana Abokoma

Fabric defect detection plays a vital role in ensuring product quality and reducing production costs in the textile industry. With the advent of computer vision techniques, fabric defect detection has witnessed significant advancements, providing automated and accurate inspection capabilities. This research article presents a comprehensive review of the state-of-the-art computer vision techniques employed for fabric defect detection. We discuss various approaches, including image processing, machine learning, and deep learning, highlighting their strengths, limitations, and future directions. The aim of this article is to provide researchers and industry professionals with a comprehensive understanding of the current landscape and inspire further innovation in this field. The proposed study presents a detailed overview of histogram-based approaches, color-based approaches, image segmentationbased approaches, frequency domain operations, texture-based defect detection, sparse feature based operation, image morphology operations, and recent trends of deep learning. The performance evaluation criteria for automatic fabric defect detection is also presented and discussed. The drawbacks and limitations associated with the existing published research are discussed in detail, and possible future research directions are also mentioned. This research study provides comprehensive details about computer vision and digital image processing applications to detect different types of fabric defects.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません。