ISSN: 2157-2526

バイオテロとバイオディフェンスのジャーナル

オープンアクセス

当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

インデックス付き
  • CAS ソース インデックス (CASSI)
  • 索引コペルニクス
  • Google スカラー
  • シェルパ・ロミオ
  • Jゲートを開く
  • Genamics JournalSeek
  • アカデミックキー
  • ジャーナル目次
  • 研究聖書
  • 中国国家知識基盤 (CNKI)
  • ウルリッヒの定期刊行物ディレクトリ
  • レフシーク
  • ハムダード大学
  • エブスコ アリゾナ州
  • OCLC-WorldCat
  • SWBオンラインカタログ
  • パブロン
  • ジュネーブ医学教育研究財団
  • ユーロパブ
  • ICMJE
このページをシェアする

抽象的な

Evidence for the Source of the 2001 Attack Anthrax

Martin E. Hugh-Jones, Barbara Hatch Rosenberg, and Stuart Jacobsen

The elemental composition of the 2001 attack anthrax presents critical clues that were not considered or were misinterpreted throughout the original investigation. Extensive experimental data released by the FBI after the anthrax case was closed make it possible to trace some of the implications of these clues: the substantial presence of tin, a toxic material that must have been added subsequent to growth, and a uniquely high content of silicon in the attack spores. No Bacillus spore preparations other than the attack anthrax have ever been found to contain such a high level of silicon, although some surrogate spore powders prepared at Dugway following FBI instructions have been cited as evidence that high levels of silicon can be reproduced; however, examination of the experimental data reveals that the silicon in these samples was unquestionably an artifact. The elemental evidence suggests that the attack spores had been coated with silicone (a polysiloxane) in the presence of tin, which catalyzes the cross-linking of polysiloxane chains needed to form an encapsulating coating on the spore coat. Microencapsulation helps protect biological agents from damage during atmospheric exposure and from the body’s defenses during infection, and would defeat some detection methods. Microencapsulation, which would explain the location and amounts of both tin and silicon in the attack spores, requires special expertise and sophisticated facilities. DOD-sponsored projects explicitly involving microencapsulation at DARPA, Dugway and perhaps elsewhere were spelled out publicly in budget documents in 1999 and thereafter, and executed at the very time of the anthrax attacks. Both the Dugway laboratory and Battelle Memorial Institute, a sub-contractor at Dugway, had extensive experience in making Bacillus spore powders; both had access to Bacillus anthracis genetically matching the attack spores; both could have made the attack spores legally for institutions conducting biodefense activities that required microencapsulated spores. Furthermore, a small but significant amount of tin, about 4% of that in the attack spores, has been found in some surrogate spore products made at Dugway. A measureable tin content has not been found in any other Bacillus spores except the attack spores. The tin in the Dugway surrogates may have been a remnant, indicative of earlier, classified work. Avoidance of governmentsponsored, classified research may account for some of the limitations of the investigation.