当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Alvin Lim Teik Zheng
Nitrogen-doped graphene has garnered ample of attention for their application in wastewater treatment. As depicted in Fig. 1, alkylamine functionalized on reduced graphene hydrogel (rGH) was achieved via a facile two-steps method involving the hydrothermal treatment of graphene oxide (GO) to rGH and the dialysis treatment of the rGH in solution containing octylamine (OA), decylamine (DA) and dodecylamine (DDA). Alkylamine functionalization promotes covalent integration through chemical reactions between the amine and remaining epoxy groups of the graphene hydrogels which provides strong interfacial interaction with any material of interest. The purpose of this study is to evaluate the impact of various alkylamine chain length functionalization on rGH. We posit that the dialysis treatment removes water content in the hydrogels and was replaced with the amine content dissolved in EtOH due to osmotic pressure. Herein, we report the successful grating of the various alkylamine chain length on rGH surface which was confirmed with spectroscopic and imaging techniques including FTIR, XRD, XPS, SEM, EDX elemental mapping and TGA. To evaluate the adsorption capability of the hydrogels, adsorption kinetics on methylene blue (MB) and bisphenol-A (BPA) were conducted and fitted by a pseudo-second-order kinetic model. This proposed grafting route will open interesting possibilities in the design of graphene-based materials with improved adsorption performance.