ISSN: 2277-1891

先進的なイノベーション、思想、アイデアの国際ジャーナル

オープンアクセス

当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

インデックス付き
  • 索引コペルニクス
  • Google スカラー
  • Jゲートを開く
  • Genamics JournalSeek
  • ウルリッヒの定期刊行物ディレクトリ
  • レフシーク
  • ハムダード大学
  • エブスコ アリゾナ州
  • パブロン
このページをシェアする

抽象的な

FFT and Wavelet-Based Feature Extraction for Acoustic Audio Classification.

A.K.M Fazlul Haque

Speech is one of the vital signals of acoustic classification. Speech recognition is also significant and very well known of audio processing. Speech contains very important frequency information of human being. The features of Audio, especially speech signal may be extracted using FFT (Fast Fourier Transform) and Wavelet to detect the frequency information of the signal. But it is difficult to extract the changes of small variation of speech signal with time-varying morphological characteristics. So, it is needed to be extracted by signal processing method because there are not visible of graphical audio signal. In this paper, an improved wavelet method has been proposed to extract the precise detection of small abnormalities of both original and noise corrupted speech signal which are taken empirically by writing MATLAB program. The proposed wavelet method found to be more summarized over conventional FFT and Wavelet in finding the small abnormalities of audio signal.