ISSN: 2157-7617

地球科学と気候変動ジャーナル

オープンアクセス

当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

インデックス付き
  • CAS ソース インデックス (CASSI)
  • 索引コペルニクス
  • Google スカラー
  • シェルパ・ロミオ
  • 環境研究へのオンライン アクセス (OARE)
  • Jゲートを開く
  • Genamics JournalSeek
  • ジャーナル目次
  • ウルリッヒの定期刊行物ディレクトリ
  • Global Online Research in Agriculture (AGORA) へのアクセス
  • 国際農業生物科学センター (CABI)
  • レフシーク
  • ハムダード大学
  • エブスコ アリゾナ州
  • OCLC-WorldCat
  • プロクエスト召喚
  • SWBオンラインカタログ
  • パブロン
  • ユーロパブ
  • ICMJE
このページをシェアする

抽象的な

Forecasting Seasonal Drought Using Spatio-SPI and Machine Learning Algorithm: The Case of Borana Plateau of Southern Oromia, Ethiopia

Abera Bekele Dinsa, Feyera Senbeta Wakjira, Ermias Teferi Demmiese, Tamirat Teferra Negash

Drought is a natural phenomenon that occurs in all parts of the world. Hence, drought monitoring and forecasting have been fundamental issue for developing and implementing a proactive drought mitigation plan. In the process of monitoring and forecasting drought occurrences; the major decisive factors are drought identification/quantification and selection of appropriate forecasting models. This study model seasonal drought forecasting using the Spatio-standardized Precipitation Index (SPI) data in the Borana plateau of Southern Oromia region of Ethiopia with the techniques of machine learning algorithm. Adjusted native resolution based historical rainfall data of 1981 to 2021 of the study area were used from NASA power project climate data repository website in the January 2022. Quantifications of SPI seasonal drought were done using SPEI package with in the RStudio software. The nonlinear outoregressive neural neuron network (NAR network) based Levenberg-Marquardt Back Propagation algorithm (LMBP) was used to model spatio-SPI seasonal drought forecasting of some sites in the study area using MATLAB software. The findings of this study showed SPI 3 months and SPI 6 months ANN based seasonal drought prediction model performance evaluation value of MSE ranged between 0.0022 and 5.5752 which were in the excellent acceptable range of validation. SPI 3 months and SPI 6 months model performance evaluation value of correlation coefficient (R) of all the study sites were above 0.9034 which was also in the excellent range of validation. The study results revealed that ANN modeling could works effectively for forecasting seasonal drought/SPI 3 months and SPI 6 months/ ahead of two months and five months lead times, respectively, in all the districts in the study area. This study identified that, actual/observed and ANN based Ganna and Hagayya seasons SPI 3 months and SPI 6-months prediction value of 1981–2021 discovered that Borana’s zone rainfall seasons on which communities rely for their entire life supporting systems were/ are drought prone seasons.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません。