ISSN: 2475-3173

子宮頸がん: オープンアクセス

オープンアクセス

当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

抽象的な

Genetic Prediction of Drug Toxicity in Cervical Cancer Using Machine Learning

Lu Wang, Wei Guo, Xiaodong Lee

Cervical cancer is a significant global health concern, necessitating the development of effective therapeutic strategies. However, the success of these strategies is often hindered by drug toxicity, which can lead to adverse effects and treatment discontinuation. Genetic variations among patients play a crucial role in their susceptibility to drug toxicity. In recent years, machine learning techniques have demonstrated remarkable potential in predicting drug responses based on genetic information. In this study, we present a novel approach to predict drug toxicity in cervical cancer patients using machine learning algorithms and genetic data. By leveraging comprehensive genetic profiles and drug toxicity information, we aim to enhance personalized treatment strategies and mitigate the occurrence of adverse drug reactions. This research holds promise in improving the safety and efficacy of cervical cancer treatments, ultimately contributing to better patient outcomes and quality of life.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません。