ISSN: 2329-8863

作物科学と技術の進歩

オープンアクセス

当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

インデックス付き
  • CAS ソース インデックス (CASSI)
  • 索引コペルニクス
  • Google スカラー
  • シェルパ・ロミオ
  • 環境研究へのオンライン アクセス (OARE)
  • Jゲートを開く
  • アカデミックキー
  • ジャーナル目次
  • Global Online Research in Agriculture (AGORA) へのアクセス
  • レフシーク
  • ハムダード大学
  • エブスコ アリゾナ州
  • OCLC-WorldCat
  • 学者の舵取り
  • SWBオンラインカタログ
  • パブロン
  • ユーロパブ
このページをシェアする

抽象的な

GGE Biplot Analysis of Yield Performance and Stability of Pearl Millet Genotypes (Pennisetum glaucum (L.) R. Br.) Across Different Environments in Ethiopia

Hailemariam Solomon, Adane G Yohans

The study was conducted in northern and western parts of Ethiopia specifically at Sheraro, Humera and Miesso locations for consecutive years beginning from 2012 to 2014. The main objective of the study was to evaluate and identify better performance and stable pearl millet genotypes across different environments and years. Fifteen pearl millet genotypes were tested at different locations and promising genotypes could be identified. The experiment was conducted using randomized complete block design with three replications. Combined mean analysis was computed after using Anderson-Darling normality test and Levene homogeneity test. Genotype and Genotype by environment interaction (GGE) biplot analysis were computed to evaluate stability and adaptability of the grain yield of pearl millet genotypes. The analysis of ANOVA indicated that the mean grain yield ranged from 1687.28 kg ha-1 for G14 (ICMV 8400 white) to 2304.72 kg ha-1 for G2 (Sub-2). From the total pearl millet genotypes seven of the genotypes showed above the mean average yields. The highest (2542.27 kg ha-1) and the lowest (1593.42 kg ha-1) grain yield were attained at Miesso in 2013 and at Sheraro in 2014 respectively. GGE biplot analysis was also computed to identify the performance and stability of pearl millet genotypes and hence a total of 72.05% variation was showed for the tested pearl millet genotypes at different environments. The study result revealed that the most responsive of corner genotypes were genotype three, genotype four, genotype five, genotype ten and genotype fourteen. At the same time genotype three, genotype six, genotype eight, genotype ten and genotype fourteen with the longest projection from the AEC x-axis were highly unstable. In contrast, genotype four, genotype two, genotype eleven and some other invisible genotypes were highly stable. In terms of stability and performance genotype four (Sub-2) was the highest followed by genotype one (Kolla-1). Regarding the GGE biplot analysis, it was the most powerful method to analyze, visualize and interpret the genotype and environment interaction. It was also a convenient procedure to genotypes stability studies and environments that has to be applied in plant breeding program. At the end, the top performed pearl millet technology should be more popularized and seed disseminated to farmers to grow at wider acreages to ascertain food security and overall livelihood improvement.