当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Hamad Saeed, Ivan G. Grove, Peter S. Kettlewell, Nigel W. Hall, Ian J. Fairchild and Ian Boomer
Hydraulic redistribution, redistribution of water upward or downward within a soil profile through roots as
a consequence of root-soil water potential gradients, can be an important mechanism in transporting chemical signals (i.e. abscisic acid) to the shoot for stomatal closure or in maintaining the root system during dry periods of partial rootzone drying (PRD). PRD involves alternate irrigation to two sides of a plant root system. The study reported here investigated the occurrence and magnitude of hydraulic redistribution in glasshouse-grown potatoes (Solanum tuberosum L.) under PRD. Deuterium labelled water was applied to only one half of the root system to field capacity at tuber initiation. The roots from the drying side of the dual pot were extracted at 3, 6, 12, 18 and 24 h following watering by the dry sieving method. Water from the roots was extracted by azeotropic distillation and analysed for hydrogen isotope ratios. Hydraulic redistribution occurred the most at night when stomatal conductance was considerably lower and leaf water potential was higher (less negative). The magnitude of the redistributed water, however, did not exceed 3.5%, indicating limited water redistribution under PRD. The observed water redistribution would probably be of little significance for the survival of roots present in the upper drier portion of the soil under higher water demanding conditions but its role in sending the chemical signals to the shoot to conserve water by reducing transpiration would be of particular significance during drying periods of partial rootzone drying.