当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Verkissa Yali
Agricultural production must increase to satisfy the crop demanding world population that growing rapidly. To meet this demand breeding may be a sustainable approach to improve crops yield without intensifying the utilization of fertilizers and pesticides. Now day’s advances in genomics and bioinformatics provide chances for rushing crop enhancement. The increase of third-generation sequencing technologies helps overcome challenges in plant genome assembly caused by polyploidy and frequent repetitive elements. Current remarkable innovations in platforms for omics-based research and application development provide crucial resources to market research in model and applied plant species. A combinatorial approach using multiple omics platforms and integration of their outcomes is now an efficient strategy for clarifying molecular systems integral to improving plant productivity. Also, crop databases that integrate the growing volume of genotype and phenotype data provide a valuable resource for breeders and a chance for data processing approaches to uncover novel trait-associated candidate genes. As knowledge of crop genetics expands, genomic selection and genome editing hold promise for breeding diseaseresistant and stress-tolerant crops with high yields. Moreover, the advancement of comparative genomics among model and applied plants allows us to recognize the biological properties of every species and to accelerate gene discovery and functional analyses of genes. Bioinformatics platforms and their associated databases also are essential for the effective design of approaches making the simplest use of genomic resources, including resource integration. Therefore the objective of these paper was to review the role of genomic and bioinformatics in plant breeding.