当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

インデックス付き
  • 索引コペルニクス
  • Google スカラー
  • Jゲートを開く
  • Genamics JournalSeek
  • 中国国家知識基盤 (CNKI)
  • 電子ジャーナルライブラリ
  • レフシーク
  • ハムダード大学
  • エブスコ アリゾナ州
  • OCLC-WorldCat
  • 仮想生物学図書館 (vifabio)
  • パブロン
  • ジュネーブ医学教育研究財団
  • ユーロパブ
  • ICMJE
このページをシェアする

抽象的な

Improvement of Patient Stratification in Palliative Care

Sarah Ziane

An essential component of computer science research, artificial intelligence model building for synthetic data creation to enhance Machine Learning (ML) methodology is presently being used to allied medical domains, such as Systems Medicine and Medical Informatics. For more than ten years, medical researchers have been motivated by the notion of individualized decision-making assistance based on patient data, but there are still significant constraints due to the overall unavailability and sparsity of data. Contrast this with the technology that is now being used, which enables us to create and analyse patient data in a variety of formats, including tabular data on health records, medical photographs, genetic data, and even audio and video. The creation of synthetic tabular data based on real-world data is one way to get around these data constraints in respect to medical records. Consequently, with more pertinent patient data available, ML-assisted decision-support may be understood more easily. A number of cutting-edge ML algorithms create and draw choices from such data, from a methodological perspective. However, there are still significant problems that prevent a widespread practical application in actual clinical situations. As a challenging primary example of highly customised, hardly available patient information, we will provide for the first time insights into current viewpoints and prospective consequences of adopting synthetic data creation in palliative care screening in this study. Together, the reader will discover some basic ideas and workable solutions that are pertinent to creating and utilising synthetic data for ML-based screens in palliative care and other fields.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません。