当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

インデックス付き
  • 索引コペルニクス
  • Google スカラー
  • シェルパ・ロミオ
  • Genamics JournalSeek
  • セーフティライト付き
  • レフシーク
  • ハムダード大学
  • エブスコ アリゾナ州
  • OCLC-WorldCat
  • パブロン
  • ジュネーブ医学教育研究財団
  • ユーロパブ
  • ICMJE
このページをシェアする

抽象的な

Integrating Spatial and Aspatial Factors in Measuring Accessibility to Primary Health Care Physicians: A Case Study of Aboriginal Population in Sudbury, Canada

Lu Wang and Travis Tormala

Heath care accessibility can be determined in both a spatial and aspatial context. While spatial access is the geographic restraints limiting one’s ability to access care, apatial access refers to the non-geographic constraints affecting access to care, typically measured by socio-economic factors. The paper presents a methodological framework to combine spatial and aspatial factors to assess the accessibility to primary care physicians. Attention is focused on the aboriginal population within an isolated city, Sudbury, in northern Ontario, Canada. A range of datasets were analyzed including the 2008 Canadian Medical Directory, 2006 census and 2008 DMTI road network data. Spatial accessibility of the aboriginal population to family physicians was measured using the enhanced two-step floating catchment area model that accounts for varying travel time thresholds associated with different travel time zones. The z-score-based aspatial scores were calculated at a DA level to reveal the highest and lowest concentrations of the aboriginal population in the study area. Combining the spatial and aspatial scores allows for problem census DAs to be determined where there are both low spatial scores and a high concentration of the aboriginal population. The methodology developed in this paper is flexible with the ability to be altered to fit different studies in different geographic regions. It provides results that are easy to interpret by health policy makers.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません。