ISSN: 2161-1165

疫学: オープンアクセス

オープンアクセス

当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

インデックス付き
  • 索引コペルニクス
  • Google スカラー
  • シェルパ・ロミオ
  • Genamics JournalSeek
  • セーフティライト付き
  • Global Online Research in Agriculture (AGORA) へのアクセス
  • 国際農業生物科学センター (CABI)
  • レフシーク
  • ハムダード大学
  • エブスコ アリゾナ州
  • OCLC-WorldCat
  • CABI全文
  • キャブダイレクト
  • パブロン
  • ジュネーブ医学教育研究財団
  • ユーロパブ
  • ICMJE
このページをシェアする

抽象的な

Matching on Race and Ethnicity in Case-Control Studies as a Means of Control for Population Stratification

Anand P. Chokkalingam, Melinda C. Aldrich, Karen Bartley, Ling-I Hsu, Catherine Metayer, Lisa F. Barcellos, Joseph L. Wiemels, John K. Wiencke, Patricia A. Buffler and Steve Selvin

Some investigators argue that controlling for self-reported race or ethnicity, either in statistical analysis or in study design, is sufficient to mitigate unwanted influence from population stratification. In this report, we evaluated the effectiveness of a study design involving matching on self-reported ethnicity and race in minimizing bias due to population stratification within an ethnically admixed population in California. We estimated individual genetic ancestry using structured association methods and a panel of ancestry informative markers, and observed no statistically significant difference in distribution of genetic ancestry between cases and controls (P=0.46). Stratification by Hispanic ethnicity showed similar results. We evaluated potential confounding by genetic ancestry after adjustment for race and ethnicity for 1260 candidate gene SNPs, and found no major impact (>10%) on risk estimates. In conclusion, we found no evidence of confounding of genetic risk estimates by population substructure using this matched design. Our study provides strong evidence supporting the race- and ethnicity-matched case-control study design as an effective approach to minimize systematic bias due to differences in genetic ancestry between cases and controls.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません。