ISSN: 2332-0702

口腔衛生と健康のジャーナル

オープンアクセス

当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

インデックス付き
  • 索引コペルニクス
  • Google スカラー
  • Jゲートを開く
  • ジャーナル目次
  • レフシーク
  • ハムダード大学
  • エブスコ アリゾナ州
  • OCLC-WorldCat
  • パブロン
  • ジュネーブ医学教育研究財団
  • ユーロパブ
  • ICMJE
このページをシェアする

抽象的な

Mineral Trioxide Aggregate Use in Pediatric Dentistry: A Literature Review

Jihan Khan, Azza El-Housseiny and Najlaa Alamoudi

Mineral trioxide aggregate (MTA), is unique endodontic cement that was initially introduced as a material for root perforation repair. Over the years its use has expanded to include versatile applications in the field of pediatric dentistry. The purpose of this article was to conduct an updated review on mineral trioxide aggregate (MTA) and on its applications in the practice of pediatric dentistry.
Sources and data: Electronic databases, “PubMed”, “Cochrane Database” and “Google Scholar”, were used to identify relevant English-language studies and literature published in the period from 1993 to 2016. The scientific papers were then screened for their relevance to the intended objectives. A combination of the key search terms mineral trioxide aggregate, MTA, pulp therapy, clinical applications, and pediatric dentistry were used.
Study Selection: Abstracts and full text articles were used to identify studies describing the composition, manipulation, properties, types, and clinical features. In addition, controlled clinical trials of clinical applications and relevant laboratory research on its properties and safety were also included.
Conclusions: MTA is a unique material with various advantages. It has been used successfully by pediatric dentists in a variety of clinical applications. However, its drawbacks especially its high cost, discoloration potential, difficulty in handling, and long setting time cannot be overlooked. With the emergence of other novel tricalcium silicate based materials that overcome MTA’s key limitations, they are competing to be the next potential dentin substitutes for the various clinical application in which MTA has been used. Nevertheless, with the recent introduction of new improved MTA products, MTA-based materials are likely to yet remain at the heart of good pediatric dental practice for many years to come.