当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Juan Esteban Berrio Sierra, Jesús Antonio Carlos Cornelio, Alejandra García García, John Bustamante Osorno and Lina Marcela Hoyos Palacio
Atherosclerosis is a cardiovascular disease that causes accumulation of lipoproteins, which leads to vascular injury and may even cause Acute Myocardial Infarction (AMI). The interaction of vascular endothelium with low - density lipoproteins (LDL) was modified by using two distinct groups of carbon nanotubes (CNTs). The first group was doped with aluminum sulfate (Al2(SO4)3) and boric acid (H3BO3), and the second group was functionalized by chemical route with carboxylic acid (COOH) and glucosamine (C6H13NO5). The catalysts used to grow the CNTs were Nickel (Ni) 50%, Cobalt (Co) 50% and Cobalt Iron (Fe - Co) 10% - 40%, by sol - gel route. Scanning electron microscopy (SEM), Raman, and contact angle were used to characterize CNTs. The Raman spectra of multi - wall carbon nanotubes showed three bands, which are called D (disorder), G (graphitization) and G’ (second harmonic order) which caused by the D band. It is observed that the intensity ratio ID / IG increases for functionalized CNTs. CNTs grown from nickel and functionalized by chemical route with glucosamine showed low wettability contact angle for the 2h and 18h oxidized LDL samples. CNTs grown from nickel and doped with aluminum sulfate showed an angle of contact with low wettability for the 2h oxidized LDL sample. An association of the sulphate groups in the density of the load and the cooperativity of the load with arginine and lysine rich peptides of the LDL sample were observed. The CNT catalyzed with (Fe - Co) and doped with boric acid evidenced a low strength of adhesion and greater surface tension for the 18h high degree oxidized LDL; resulting in a repulsion of residues of lysine and arginine of the altered structure of ApoB 100 of the LDL. The obtained CNT structures are presented as a possible devise coating with therapeutic potencial to avoid the progression of atherosclerosis.