当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Ruth Mary
An alternative to the well-known reactive permeable barriers (PRBs) is the objective of this paper. Using a reactive barrier below the ground known as PRB is one method for cleaning up contaminated groundwater. New polymer active substrates (ASs) were used to prevent hazardous heavy metals from entering the soil. On the skeleton material (fiberglass or textile), aliquat 336, bis(2-ethylhexyl)adipate, and polyvinyl chloride were utilized as the active substrates. Aliquat 336 bound the metal ions Cr(VI), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II). In contrast to the PRBs, the ASs were straightforward to obtain through pouring. The obtained ASs can be recycled and reused. The active substrates were bound to the study soil and a variety of metal ions from aqueous solutions. The active substrate was found to have reduced the concentrations of nickel, cadmium, lead, and chromium in the aqueous solution by more than 50% and more than 90%, respectively. Additionally, the use of revealed that the metals zinc and chromium had a high sorption efficiency of 81% and 66%, respectively, which restricted their movement from the soil to the water. In soil, the best combination of active substrate and plasticizer was the most efficient. This solution reduced copper, lead, and cadmium by more than 70% and by at least 50% for each tested metal ion.