当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Kevin Carbonnier* and Stephen Treado
Renewable energy technologies, most notably wind, solar hot water, and solar photovoltaic are not always available to the residential sector due to financial and feasibility challenges. In this paper we investigate the potential benefit of aggregating residential loads to more closely match the renewable energy generation profiles and to have a smoother energy demand curve which can be more efficiently supplied by an energy storage system.
Four individual residential load profiles are matched against an optimized combination of wind, solar hot water, and solar photovoltaic generation. A simulation is then run to assess the percentage of the demand which must be supplied via auxiliary energy sources (i.e. the grid) with and without a thermal energy storage system. Finally, these four load profiles are randomly combined to create a 50 user community load profile. This aggregated profile is also matched against the renewable energy generation and the results are compared to individual load profile performance metrics for January, April, and July data.
In the April and July cases, the community load profile reduced the demand supplied by auxiliary energy by as much as 5% on average in a simple system without storage (An improvement over the average of the individual loads of about 11%). With storage, a community system reduces demand supplied by auxiliary energy by about 0.8%, which is an improvement over the average individual loads of also about 11%. It is concluded that community shared renewable energy systems can be beneficial not only in terms of economics and feasibility, but also in terms of thermodynamics, which is often overlooked.