材料科学およびナノ材料ジャーナル

オープンアクセス

当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

抽象的な

Polyacrylamide-metilcellulose hydrogels containing aloe barbadensis extract as dressing for treatment of chronic cutaneous skin lesions

Desireé Alesa Gyles

Chronic wounds are severe breaks in the skin barrier that fail to heal in an acceptable time-frame, thus preventing the complete restoration of the tissue’s anatomical and functional integrity, increasing the likelihood of infections and apoptosis. Hydrogels are known as a drug delivery system and have the potential to cover wounds and burns on the skin. Aloe barbadensis contains over 75 different bioactive compounds which are responsible for its anti-inflammatory and antimicrobial properties. In this study, the polyacrylamide-co-methylcellulose hydrogel containing Aloe barbadensis were developed. The extract was prepared from lyophilized Aloe barbadensis, using methanolic extraction, characterized by high performance liquid chromatography and incorporated into the hydrogels. These aloe barbadensis hydrogels were characterized by degree of swelling, fourier-transform infrared spectroscopy, scanning electron microscopy and thermal profiling using thermogravimetric analysis. The minimum inhibitory concentration test was done on the aloe barbadensis extract to evaluate its antibacterial and antifungal activity in vitro. The aloe barbadensis hydrogels and were shown to swell to almost 2000% of their original sizes. The Fourier-transform infrared spectroscopy indicated the presence of bands characteristic of Aloe barbadensis and hydrogel polymers. The basic hydrogel showed greater thermal stability than the hydrogels with aloe barbadensis. The minimum inhibitory concentration showed inhibition of the growth of S. aureus and Salmonella spp. at specific concentrations. The hydrogel therefore presents itself as an excellent potential curative cover of cutaneous lesions.