当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
IshamAlzoub
Land leveling is one of the most important steps in soil preparation for agricultural and other purposes. . New techniques based on artificial intelligence, such as Artificial Neural Network, integrating Artificial Neural Network and Imperialist Competitive Algorithm (ICA-ANN), or Genetic Algorithms (GA-ANN), or Particle Swarm Optimization (PSO-ANN) have been employed for developing predictive models to estimate the energy related parameters and the results were compared to SPSS and Sensitivity Analysis results. In this study, several soil properties such as cut/fill volume, compressibility factor, specific gravity, moisture content, slope of the area, sand percent, and swelling index were measured and their effects on energy consumption were investigated.Totally 90 samples were collected from 3 land areas by grid size of 20m×20m. The aim of this work was to develop predictive models based on artificial intelligence techniques to predict the environmental indicators of land leveling . Results of sensitivity analysis illustrated thatonly three parameters consist of soil density, soil compressibility,andsoil cut/fillmeaningful effects