ISSN: ISSN 2472-0518

石油とガスの研究

オープンアクセス

当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い

オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得

抽象的な

Prediction of environmental indicators using artificial intelligence techniques

Isham Alzoub

Abstract Land leveling is one of the most important steps in soil preparation for agricultural and other purposes. . New techniques based on artificial intelligence, such as Artificial Neural Network, integrating Artificial Neural Network and Imperialist Competitive Algorithm (ICA-ANN), or Genetic Algorithms (GA-ANN), or Particle Swarm Optimization (PSO-ANN) have been employed for developing predictive models to estimate the energy related parameters and the results were compared to SPSS and Sensitivity Analysis results. In this study, several soil properties such as cut/fill volume, compressibility factor, specific gravity, moisture content, slope of the area, sand percent, and swelling index were measured and their effects on energy consumption were investigated. Totally 90 samples were collected from 3 land areas by grid size of 20m×20m. The aim of this work was to develop predictive models based on artificial intelligence techniques to predict the environmental indicators of land leveling . Results of sensitivity analysis illustrated that only three parameters consist of soil density, soil compressibility, and soil cut/fill volume had meaningful effects on energy consumption. Among the proposed methods, the GA-ANN had the most capability in prediction of the environmental energy parameters. However, for prediction of LE and FE the ANN and ICA-ANN algorithms had better performance On the other hand, SPSS software had higher R 2 value than Minitab software and sensitivity analysis and in fact close to the ANN values. Keywords: Energy; Imperialist competitive algorithm; Sensitivity analysis; ANN; Land levelling; Environmental indicators.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません。