当社グループは 3,000 以上の世界的なカンファレンスシリーズ 米国、ヨーロッパ、世界中で毎年イベントが開催されます。 1,000 のより科学的な学会からの支援を受けたアジア および 700 以上の オープン アクセスを発行ジャーナルには 50,000 人以上の著名人が掲載されており、科学者が編集委員として名高い
。オープンアクセスジャーナルはより多くの読者と引用を獲得
700 ジャーナル と 15,000,000 人の読者 各ジャーナルは 25,000 人以上の読者を獲得
Sunayana Gupta
Due to increased pollution, greenhouse effect and global warming
resulting from power production using fossil fuels, there
is increased penetration of renewable energy sources into the
power production system. Over the last few years, solar radiation
has become a significant means of power production
using solar panels and the concept of microgrids has made
solar power an indispensable source of power in the distribution
system. The power production using solar energy is highly
variable and weather dependent which creates a power imbalance
into the system when it is penetrated without forecasting.
Therefore, solar power prediction plays a critical role in the
proper usage of solar energy while keeping the system stable.
For automating the power system the forecast needs to be very
accurate and thus, it is needed to improve the existing forecasting
techniques. In this study, we have proposed a solar radiation
scheme based on various meteorological factors, including
temperature, humidity, wind speed, and others and used this
data for building a machine learning model for prediction. We
introduced a hybrid model for prediction which optimizes the
parameters of Random Forest using Particle Swarm Optimization
technique. The results show empirically that the hybrid
RF-PSO model significantly improves the prediction accuracy
and reduces the MAE error.